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Phase space lattices with threefold symmetry 
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Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 

Received 16 November 1989 

Abstract. This paper presents a semiclassical analysis of the spectrum of the Hamiltonian 

ir = cos(P - e )  +cos ;c i+v /3  5 ,  +COS f ( P  - A  5 )  
which is a model for Bloch electrons in a magnetic field. The energy levels are determined, 
to a first approximation, by Bohr-Sommerfeld quantisation. Because of the translational 
symmetry in phase space, this leads to a lattice of infinitely degenerate states. This 
degeneracy is lifted by tunnelling effects, which can be described by an effective Hamiltonian 
of the same form as that above, but with different values of 0 and h. The calculation of 
the effective Hamiltonian therefore defines a renormalisation-group transformation, and 
it predicts that the spectrum has a complex recursive structure, which is confirmed by 
numerical experiments. 

The results complement earlier work on lattices with fourfold symmetry, in which a 
similar type of spectrum occurs: the greater complexity of the problem in lattices with 
threefold symmetry necessitated developing simpler, canonically invariant, methods of 
analysis. 

1. Introduction 

This paper will analyse the spectrum of the Hamiltonian 

concentrating on results which are valid in the semiclassical limit h + 0. The analysis 
will lead to a renormalisation-group ( RG) transformation, which shows that the spec- 
trum has a recursive structure, illustrated for 0 = 7r/4 in figure 8 (see section 7). This 
hierarchical structure is a result of the classical Hamiltonian corresponding to (1.1) 
having centres of threefold symmetry in the x - p  plane. These results are related to 
an earlier semiclassical analysis of the spectrum of Harper’s equation (Harper 1955), 
which is equivalent to the Hamiltonian 

The spectrum of Harper’s equation also has a recursive structure (Azbel’ 1963, 
Hofstadter 1976), which is consequence of the fourfold symmetry of the corresponding 
classical Hamiltonian, and which has also been analysed by a RG transformation based 
on a WKB analysis (Suslov 1982, Wilkinson 1984). Although the essential ideas are 
the same, a more general method, with a clearer physical interpretation is described 
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in this paper, The RG transformation is approximate because semiclassical methods 
are used to estimate certain matrix elements, but the method can be extended to give 
an exact RG transformation (Wilkinson 1986, 1987b). The spectrum of (1.1) has 
previously been examined numerically (for the case of 8 = 0) by Claro and Wannier 
(1979), who introduced the important concept that the gaps in the spectrum can be 
labelled by a pair of integers, but did not consider the hierarchical properties of the 
spectrum. 

Although the main motivation is the mathematical interest of the results, 
Hamiltonians periodic in 2 and p* are also of physical interest, because they are a 
single-band model for Bloch electrons in a magnetic field in two dimensions (Peierls 
1933, Harper, 1955, Wilkinson, 1987a), and for superconducting lattices close to the 
transition temperature (see e.g. Pannetier et a1 1987). The rotational symmetry of the 
Hamiltonian in phase space corresponds to that of the lattice in real space (Wilkinson 
1987a). The only cases for which a recursive spectrum occurs are when the lattice has 
centres of threefold or fourfold symmetry, and the models defined by (1.1) and (1.2) 
are universal in the sense that the fine structure of the spectrum of any Hamiltonian 
with these symmetries resembles that of (1.1) or (1.2), for almost all values of the f i .  

The principal ideas can be summarised as follows. Because of the threefold 
symmetry, almost all contours of the classical Hamiltonian H ( x ,  p )  are closed curves, 
and the energy levels are determined by the Bohr-Sommerfeld quantisation condition 
in the limit f i  + O .  The Bohr-Sommerfeld quantisation condition and the form of the 
phase curves are discussed in section 2. Because of the translational symmetry of the 
classical Hamiltonian, the Bohr-Sommerfeld quantised states are infinitely degenerate, 
with one state associated with each of a lattice of closed contours. The degeneracy of 
these states is split by tunnelling between the phase contours. Section 3 gives semi- 
classical formulae for the matrix elements describing this tunnelling process. In section 
4, it is shown that these matrix elements are exactly equivalent to those of an effective 
Hamiltonian which is of the same form as (1.1). In section 5 this result is interpreted 
as a renormalisation-group transformation, by which the splitting due to tunnelling of 
each Bohr-Sommerfeld quantised level is described by a Hamiltonian of the form 
( l . l ) ,  with different values of f i  and 8. Section 6 describes the derivation of a simple 
analytical formula for the renormalisation of 8. Numerical results, comparing the 
sub-band structure with the theoretical predictions, are described in section 7. 

The method differs from that used to analyse Harper’s equation (Wilkinson 1984), 
in that we give semiclassical estimates for the matrix elements of the Hamiltonian in 
a von Neumann lattice basis, with states localised in phase space, rather than in a 
basis in which the states are only localised in coordinate space. This canonically 
invariant method of calculation clarifies the role of the rotational symmetry in phase 
space, and greatly simplifies the calculation, which would be prohibitively difficult by 
the earlier method. 

Because position and momentum variables play an equivalent role in our model 
Hamiltonian, it is important to give a canonically invariant theory for the tunnelling 
interaction. We give canonically invariant expressions, which can be derived in a 
non-rigorous way using the transfer matrix approach to WKB theory. These formulae 
may find applications in other problems involving systems with rotational symmetry 
in phase space, such as the rotational spectra of heavy, highly symmetric molecules 
(Harter and Patterson 1984). Our extensive numerical results provide evidence that 
these formulae are correct. 
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2. Phase contours and quantisation 

If the phase contours of the Hamiltonian H(x ,p )  are closed, the energy levels are 
determined by the Bohr-Sommerfeld quantisation condition in the semiclassical limit 
( h  + 0). This states that the phase contour at an energy equal to the nth eigenvalue 
E ,  satisfies the area quantisation relation 

p dx = 2 ~ (  n +:) h. (2.1) I H = E ,  

For a simple derivation see Landau and Lifshitz (1958). Every contour which satisfies 
(2.1) at a given energy corresponds to an independent solution of the Schrodinger 
equation: because of the invariance of the classical Hamiltonian under translations in 
phase space, equation (2.1) predicts that there is a discrete spectrum of infinitely 
degenerate levels. 

It is clearly very important to understand the form of the contours of H(x, p ) .  The 
classical Hamiltonian has threefold rotational symmetry in phase space, and this implies 
that all of the phase contours are closed, apart from a separatrix at one isolated energy. 
Phase contours are plotted in figure l (a ) - (c )  for three different values of 8, namely 
6 = ~ / 4 ,  which is a typical case, and 6 = 0, ~ / 2 ,  which exhibit special features. Apart 
from an unimportant change in origin in ( x , p )  space, the Hamiltonian changes sign 
upon adding T to 8: 

(2.2) 

where XI = x + 2 ~ ,  p ’  = p .  
Later sections of this paper will consider the splitting of the infinite degeneracy 

predicted by (2.1) due to tunnelling effects. To analyse these tunnelling effects it is 
important to characterise the possible forms for the lattice of phase trajectories at a 
given energy, satisfying (2.1). There are three different cases which must be considered. 

( a )  One contour per unit cell. This the simplest case, illustrated in figure 2(a). 
There is only one phase contour per unit cell at the energy at which the Bohr- 
Sommerfeld quantisation condition is satisfied. 

( b )  Two contours per unit cell, non-degenerate case. This is illustrated in figure 
2(b). There are two contours per unit cell at a given energy, with different areas. 
Except in cases of accidental degeneracy, only one of these contours can be made to 
satisfy the Bohr-Sommerfeld quantisation condition. 

(c) Two contours per unit cell, degenerate case. In this case the areas of both 
contours satisfy the Bohr-Sommerfeld quantisation condition at the same energy, or 
with an energy difference comparable with the splitting due to tunnelling. For typical 
values of 8, this only occurs for isolated values of h, but when 8 = 0 or T,  the degeneracy 
is forced by the sixfold symmetry of the lattice (figure 2(c)). 

H ( X ,  p ;  e +  T )  = -H(x’, pi; e )  

3. Semiclassical theory of the tunnelling interaction 

The Bohr-Sommerfeld quantisation procedure predicts that the Hamiltonian has a 
discrete spectrum with infinite degeneracy. This degeneracy is split by tunnelling 
between the phase contours, and the discrete levels are broadened into narrow bands. 
The Bohr-Sommerfeld quantised states can be used as a basis set for the band, and 
the tunnelling interaction can be expressed in terms of a set of matrix elements coupling 
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Figure 1. Contours of the classical Hamiltonian function, for various values of 0: 
( 0 )  0 = 77/4, a typical case, ( b )  0 = 0, which is special because it has sixfold symmetry, 
( c )  0 = n/2 ,  which is special because the Hamiltonian has monkey saddles. 
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Figure 1. (continued) 
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Figure 2. There are three possible forms for the contours of H ( x , p )  at a given energy: 
( a )  one contour per unit cell, (6)  two dissimilar contours, ( c )  two contours per unit 
cell satisfying the Bohr-Sommerfeld quantisation condition. 

different states in the lattice. This section will give the semiclassical theory for these 
matrix elements. 

The matrix element coupling two Bohr-Sommerfeld quantised states has a magni- 
tude, which is uniquely defined, and a phase which is arbitrary, because the Bohr- 
Sommerfeld quantisation condition does not define the phase of the states. Although 
the phase of individual matrix elements is arbitrary, the sum of the phases of a sequence 
of matrix elements coupling a set of states cyclically does have a definite value. To 
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see this, consider the states Il), 12), 13) shown schematically in figure 3. Making an 
arbitrary choice of the phases of 11) and 12) determines the arbitrary phase of the matrix 
element (llH12), and an arbitrary choice of the phase of 13) fixes the phase of (21H13). 
The phase of (31Hll) is then determined, so that the complex phase 0, of the product 
of these matrix elements has a well defined value. 

Figure 3. Because the phases of different states are 
arbitrary, the phase of any given matrix element is 
not uniquely defined. Only the product of a sequence 
of matrix elements joining states in a closed loop is 
well defined. There are two types of inequivalent 
irreducible loop in a simple lattice with threefold 
symmetry. 

All the semiclassical calculations of the tunnelling matrix elements can be expressed 
in terms of action integrals of the form 

r 
Sc = 9 P dq (3.1) 

where C is a closed contour of the Hamiltonian at energy E 

H ( q ,  P) = E. (3.2) 
The action function S is invariant under canonical transformations, because S is the 
area of the contour C, and canonical transformations are area preserving. Because 
the tunnelling matrix element can be expressed in terms of action integrals and h, the 
expressions are certainly invariant under canonical transformations. 

In order to calculate the tunnelling matrix elements, we must consider the analytic 
continuation of (3.2) into complex phase space: this equation now defines a two- 
dimensional surface in a four-dimensional space. The contour C in (3.1) is no longer 
unique, but the action S is invariant under continuous deformations of the contour 
C, because (3.2) defines p as a function of q and E. A pair of contours A, B in the 
real (4, p )  plane can usually be joined by a complex path from A to B, every point of 
which lies on the complex energy surface defined by (3.2). We can form a distinct 
path back from B to A by taking the complex conjugate of the original path, which 
also satisfies (3.2) because H ( q , p )  is real. The action for this loop joining contours 
A and B is clearly purely imaginary, and invariant under continuous deformations of 
the circuit. This action integral plays an important role in the calculation of the 
tunnelling matrix element. 

Now we will describe the calculation of the tunnelling matrix elements for each 
of the patterns of phase trajectories described in section 2. In most cases the formulae 
used can be derived quite simply in a non-rigorous way using the transfer matrix 
approach to WKB theory discussed in the book by Heading (1962), and no derivation 
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will be given. One formula for the semiclassical limit of a matrix element is quite 
difficult to derive, and this is explained in appendix A. The numerical methods used 
for analytic continuation on the complex energy surface are described in appendix B. 

3.1. One contour per unit cell 

In the semiclassical limit h + 0, the magnitude of the matrix element between states 
IA) and IB) is 

E = ~ ( w ~ w ~ ) ” *  exp(-/Im s21/h) (3.3) 

where w A  and os are the classical frequencies of oscillation for each phase trajectory, 
and S2 is the action integral for a path on the complex energy surface joining contours 
A and B (figure 4(a)) .  The classical frequency of vibration on a given phase trajectory 
is 

- 1  wA=[z] (3.4) 

where SA is the area of the phase trajectory corresponding to state lA) at energy E, 
and we regard E as being negative if the w are negative. Usually there will be many 
different possible topologically inequivalent paths between the phase trajectories A 
and B. In the limit h + 0, the path for which IIm Szj is smallest makes the dominant 
contribution. Also, in this limit only the coupling with the largest matrix elements 
need be considered, since all the others are exponentially small in comparison. For 
all the cases we examined, the strongest coupling was between pairs of states which 
are geometrically nearest neighbours on the lattice. 

( b )  

Figure 4. Paths used to describe the tunnelling theory for the coupling matrix elements. 
The dotted lines show the projection of paths on the complex energy surface onto the real 
phase plane. The paths are not unique, because the complex energy surface is two- 
dimensional. ( a )  Path used to determine the action s,, which determines the magnitude 
of the tunnelling matrix element. ( b )  Path used to determine the actions S3, Si which 
determine the phase of the product of three matrix elements forming an irreducible cyle. 

Next consider the relative phases of the matrix elements coupling the states in the 
lattice illustrated in figure 3. There are two distinct types of irreducible loop which 
can be formed by the coupling of triplets of nearest neighbouring states; the products 
of the matrix elements forming these loops are 

~ 1 2 ~ 2 3 ~ 3 l =  exp(-io,) ~ 2 4 ~ 4 3 ~ 3 2 =  exp(-io2) (3.5) 
where E is the magnitude of the matrix element coupling nearest neighbours in the 
lattice. The phases el and O2 are both calculated in the same way: we find a path on 
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the complex energy surface joining all three states in a loop (figure 4( b ) ) .  If the action 
integral for this path is S 3 ,  the phase 0 is given by 

0 = (Re( S 3 ) /  h + 7r/2) mod 27r. (3.6) 

3.2. Two contours per unit cell, non-degenerate case 

In this case, only one of the contours in each unit cell satisfies the Bohr-Sommerfeld 
quantisation condition. The other contour is still important, because although it does 
not support a quantum state at this energy, the tunnelling path uses this contour. The 
magnitude of the coupling matrix element between states on sublattice A is given by 

h W A t 2  
E =  

2 sin( y / 2 )  (3.7) 

where 

t = exp( -/Im S 2 / /  h ) .  (3.8) 
S B  

y=-+77 
h 

SB is the action integral of the contour on sublattice B, and S ,  is the action integral 
joining phase contours of the A and B states. Note that this expression diverges when 
the contours of the B sublattice satisfy the Bohr-Sommerfeld quantisation condition, 
because this condition can be written in the form sin( y / 2 )  = 0. A derivation of (3.7) 
is given in appendix A .  

The relative phases of the matrix elements are characterised by two phase angles 
as in the case of a lattice with one contour per unit cell. In this case the phase 0 for 
the smaller loop (containing only one contour of type B )  is 

where [ X I  denotes the integer part of X .  

3.3. Two contours per unit cell, degenerate case 

In this case all the contours support quantum states at the energy concerned, and the 
magnitude E of the tunnelling matrix element is given by (3.3). The smallest irreducible 
circuits of coupled states contain six states, and there is only one type of loop for 
which the product of the matrix elements is 

H12H23H34H4&&61= exp(-ie). (3.10) 
The phase 0 is obtained from a path connecting all six of these contours on the complex 
energy surface: if S,  is the action integral of this closed path, then 

(3.11) 0 = (Re s6/ h ) mod 277 

and simple geometrical considerations show that 

Re S6 = A - a ,  - a 2  (3.12) 
where A is the area of the unit cell, and U , ,  u2 are the areas of the two contours at 
energy E. Because the areas of these contours satisfy the Bohr-Sommerfeld quantisa- 
tion condition, then 

S6= A mod 277h (3.13) 
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which implies that we can take 
8 = A / h .  

2537 

(3.14) 

4. An effective Hamiltonian for the tunnelling interaction 

The results of the previous section showed how to calculate the matrix elements 
describing the tunnelling process in the limit h + O .  In this limit, only tunnelling 
between nearest-neighbouring states (for which / Im SI is smallest) need be considered; 
matrix elements coupling other pairs of states are negligible. The phases of the matrix 
elements are not determined uniquely; only the sum of the phases for a sequence of 
matrix elements forming a closed loop is physically meaningful. This section will show 
how it is possible to write down an effective Hamiltonian for which the matrix elements 
are equivalent to those of the tunnelling interaction, and which is closely related to 
the original Hamiltonian (1.1). There are two cases, which must be considered separ- 
ately. 

( a )  Simple lattice (figure 5 (  a ) ) .  The interaction is described by four parameters: 
Eo, the unperturbed energy of the states; E ,  the magnitude of the tunnelling matrix 
element, and the phases e,, Or of the matrix elements for the two inequivalent loops. 
The parameters Eo and E only determine a shift of origin and scale of the spectrum, 
and we can set Eo = 0, E = 1, without loss of generality. (If E is negative, we must add 
T to 8, and to take account of this; see (3.5).) 

0 

I b )  
0 

0 i ,  I # )  1 0 l o  
0 0 t 0 I 0 

Figure 5. Lattices used to define the effective Hamiltonian for the tunnelling interaction: 
( a )  simple lattice, ( b )  dual lattice. 

( 6 )  Dual lattice (figure 5(  b ) ) .  The interaction is again described by four parameters: 
the unperturbed energies E A ,  Eg*f the different types of states, the magnitude of the 
matrix elements E, and a phase 8 for the single type of loop. Without loss of generality, 
we can reduce this to two parameters: we set the origin and scale of the spectrum by 
taking Eo= ( E A + E e ) / 2  =0, and E = 1. The remaining two parameters are 8 and 
A = (EA - E B ) /  E .  

4.1. Simple lattice case 

The strategy is to define a von Neumann lattice of states based on the simple triangular 
lattice illustrated in figure 5 ( a ) ,  and to consider the matrix elements of a Hamiltonian 
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of the form (1.1) in this basis. The matrix elements are equivalent to those of the 
tunnelling interaction derived above, for a suitable choice of 6 and A. 

First consider the generation of a von Neumann lattice of states. The operator 

F ( x ,  P) = exp[i(H - x@)/ A ]  (4.1) 

has the properties of a translation operator in phase space; it shifts the Wigner function 
of the state on which it acts by the vector R = ( X ,  P) in phase space. The lattice 
illustrated in figure 5 ( a )  is based on three fundamental translations TI, T2,  and T3,  
represented by the operators 

f, = f ( 2 r ,  -2r/J3) f 2 =  f ( - 2 r ,  - 2 r / J 3 )  f3 = f ( 0 , 4 r / J 3 ) .  (4.2) 

We define a von Neumann lattice of states In, m) by translation of a generating state 
14), which has its Wigner function localised around an arbitrary origin in phase space: 

(4.3) ~ n ,  m) = f~ f ~ l 4 )  

(n', "In, m) = 6,,tS,,. 

and assume that the generating state is chosen so that these states are orthogonal 

(4.4) 

The translation operators (4.1) do not commute; using the Baker-Hausdorf relation 
we see that if R I ,  R Z ,  R3 are three vectors in the phase plane which form a closed loop 

R,  + Rz+ R3 = O  (4.5) 

then 

f ( R 3 ) f ( R 2 )  f ( R , )  = exp(iA/ A )  (4.6) 

where A is the area of the triangle formed by the three vectors, with the convention 
that A is positive if the boundary of the triangle is traversed anticlockwise. 

Having defined the von Neumann lattice, we now introduce a Hamiltonian which 
is the sum of the three elementary lattice translations and their inverses 

A = f l+ f:+ f 2  e-"'+ f 2 e i 0 ' +  f3+ fl. (4.7) 

Note that this Hamiltonian connects each coherent state in the von Neumann lattice 
to all of its nearest neighbours. Let us evaluate the product of the matrix elements of 
(4.7) for the two cyclic sequences of states illustrated in figure 3. Using the results above 

=exp(-iA/fh) 

H31 =(3(r i l l )=( l l f :All)= 1 

where A is the area of the unit cell, equal to 81r2/J3. The product of the matrix 
elements for the first cycle is therefore 

H12H23H31 = exp[-i(A/2h + e' ) ] .  (4.9) 

A similar calculation shows that the product for the second cycle is 

H43H32H24 = exp[-i(A/2h - e')]. (4.10) 
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It is clear that the matrix elements of the Hamiltonian (4.7) are equivalent to the matrix 
elements calculated semiclassically in section 3 if 

el = (A/2h + e‘) mod 2~ 

e2 = (A/2h - e ’ )  mod 277 
(4.11) 

and that (4.7) can therefore be used as an effective Hamiltonian for describing the 
splitting of the Bohr-Sommerfeld quantised states. 

Using (4.11, we see that the effective Hamiltonian can be written in the form 

A = 2  COS(^^ - e t )  + 2 COS $(a’ + J3p*’) + 2 COS $(a’ - 43 8’) (4.12) 

where x’, p ’  are scaled coordinates and momenta 

4T2  p ’ = -  4rr2 
XI=- 

J3h d3 h P  

which satisfy the commutation relation 

(4.13) 

(4.14) 

The splitting of the band by tunnelling effects is therefore described by an effective 
Hamiltonian (4.12) which is identical to the original one, apart from having a different 
phase parameter 8’ and a different effective Planck constant h’.  

4.2. Dual lattice case 

The dual lattice is illustrated in figure 5 ( b ) .  There are two interpenetrating simple 
lattices of the type illustrated in figure 5(a) .  The states localised on the A and B 
sublattices have site energies AI2 and -AI2 respectively, and the matrix elements 
coupling nearest neighbours are taken to have unit magnitude. In section 3, we saw 
that the product of the matrix elements coupling a cycle of six states has a complex 
phase which is equal to the area of a unit cell divided by h, modulo 2~ (compare with 
3.14)) : 

H12H23H34H45H56H61 = exp(-ie) 8 = A / h - 2 m .  (4.15) 

In the case of the dual lattice our strategy will be to calculate the matrix elements 
of the square of the effective Hamiltonian. We will find that this is equal to the effective 
Hamiltonian for a simple lattice with a particular value of e’, plus a constant term. 
The matrix elements of the square of the Hamiltonian are 

( a l f i 2 1 b ) = x  (alfili)(ilfilb) (4.16) 

where the sum runs over all possible intermediate states ) i ) .  Three cases must be 
considered. 

( a )  Diagonal matrix elements, la)= Ib). Here four terms contribute to the sum, 
giving 

(a)H21a)=3+A2/4. (4.17) 

( b )  States la) and Ib) are nearest neighbours. Here two equal and opposite terms 
contribute to the matrix element, which is therefore zero. 
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3 between states on the A sublattice use contours of 
the B sublattice. One type of cycle uses one B 
contour to connect three A states, and the other uses 
three B contours. 

( c )  States la) and Ib) are next-nearest neighbours. Here only one term contributes, 
and the magnitude of the matrix element is unity. The product of three matrix elements 
of H 2  coupling a cycle of states is given by (4.15) for one type of irreducible circuit 
and unity for the other type, in which the three states on the A sublattice are coupled 
through only one contour of the B sublattice (see figure 6 ) .  For all other pairs of 
states the matrix elements of H 2  are zero. 

Note that the next-nearest neighbours of sites on the dual lattice are nearest 
neighbours on the simple lattice, and that the matrix element coupling nearest neigh- 
bours is zero. This shows that the square of the Hamiltonian describing the tunnelling 
splitting is equal to that given by (4.7) or (4.12), plus a constant 3+A2/4, given by 
(4.17). The effective Hamiltonian is therefore 

f i  = [ (3+A2/4)+2 cos(?- E')+2 cos f ( ? + J 3  p^')+2 cos $(.?-J3 (4.18) 

with 

A e'=- 
2h (4.19) 

where the commutator of .2' and 6' is given by (4.14). Both branches of the square 
root are required, one for each of the two sublattices. 

5. The renormalisation-group transformation 

In this section we review the important results from sections 3 and 4 and show how 
they can be interpreted as a renormalisation-group transformation acting on the 
parameters 0 and h. Section 3 gave semiclassical expressions for the matrix elements 
of the tunnelling interaction, and section 4 showed that these matrix elements are the 
same as those of an effective Hamiltonian coupling the states of a von Neumann lattice. 
The effective Hamiltonian (4.12) is of the same form as the original Hamiltonian ( l . l ) ,  
which suggests that a renormalisation-group transformation exists for describing the 
fine structure of the spectrum. 

We cannot, however, conclude immediately that we have constructed a renormalisa- 
tion-group transformation. The difficulty is that the von Neumann lattice basis was 
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an undercomplete set (with less than one state per Planck constant area). The remaining 
part of the argument, which resolves this difficulty, was discussed in an earlier paper 
(Wilkinson 1986). This paper considered the matrix elements of a Hamiltonian fi, 
periodic in i and 5, in an undercomplete von Neumann lattice basis, In, m, v). The 
von Neumann lattice basis was transformed into a new basis, In, 8, v) (essentially, this 
is a Fourier transformation over the m label, with S regarded as a continuous variable 
with a finite range), and it was shown that in this new basis the Hamiltonian becomes 
a difference operator with periodic coefficients. An effective Hamiltonian (analogous 
to that considered above) was written down, and it was shown that taking matrix 
elements with respect to a suitable complete basis leads to the same difference equation. 
This establishes that the spectrum of the sub-band is indeed that of the effective 
Hamiltonian. 

The results of section 4 therefore imply that the splitting of the Bohr-Sommerfeld 
quantised level has the same spectrum as a renormalised Hamiltonian, with different 
values of h and e, which can be calculated using the semiclassical results from section 
3.  The remainder of this section gives explicit formulae for the renormalised parameters 
e’, h’ :  the discussion is divided into three parts, depending on the form of the lattice 
of phase trajectories. 

5.1. One contour per unit cell 

The phase relationship of the matrix elements coupling the Bohr-Sommerfeld quantised 
states is described by two phase angles, which give the complex phase of the product 
of the matrix elements for the two types of irreducible loops in the lattice. The 
semiclassical theory for these phase angles is described in section 3; the phase angles 
e, ,  Bz are given by 

sj 7 e,=-*- s3 e,=-*- 
h 2  f i 2  

where we take the positive sign if the contours are below the separatrix, and vice versa. 
The action integrals satisfy 

S, + Si = A - a (5 .2 )  

where A = 8.rr2/d3 is the area of the unit cell, and a is the area of the Bohr-quantised 
contour (see figure 4(b)).  

The coupling matrix elements were shown in section 4 to be equivalent to those 
of an effective Hamiltonian, which is a sum of translation operators acting on a 
von Neumann lattice corresponding to the Bohr-Sommerfeld quantised states. The 
corresponding phases of products of matrix elements are 

A 
~ 2 = - - ~ t  

A e - -+e i  
‘ - 2 h  2 f i  (5.3) 

where 8‘ is a parameter of the effective Hamiltonian. Note that (5.1) and ( 5 . 2 ) ,  together 
with the Bohr-Sommerfeld condition satisfied by a, imply that 8,+8,  is equal to 
A/  h mod 2 7 ,  as is required for consistency with (5.3). Comparing (5.1) and (5.3) we 
find an expression for 8’: 

(5.4) 
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By a suitable scaling of the phase space coordinates x and p ,  the effective 
Hamiltonian can be written in the same form as the original Hamiltonian: 

H '  =COS($ - e') +COS i(a +J3 p ^ )  +COS ;(a -J3 6). ( 5 . 5 )  

The effective value of h is 

16.n2 
f i t = -  

3 h  (5.6) 

and the area of the transformed unit cell is A ' =  J3 hI2/2. 

area of a unit cell, p, defined by 
It is useful to introduce a dimensionless measure of the phase associated with the 

A A' 2.n _-_- -  
h - h ' - p '  (5.7) 

In terms of P, the transformation of the effective Planck constant (5.6) can be expressed 
in the simple form 

1 P ' = -  
P 

(5.8) 

where from (5.7) p =J3 h / 4 ~  and p'=J3 h'l4.n. 
The splitting of the degeneracy of the Bohr-Sommerfeld quantised states is deter- 

mined by a new effective Hamiltonian of the same form as the original one, but with 
new values of 8 and P (or A ) .  Equations (5.4) and (5.8) define a renormalisation-group 
transformation mapping the parameters p and 8. The conditions for the validity of 
these expressions are those required for the validity of the semiclassical approximations 
used in sections 2 and 3, i.e. that p or h is small and the energy is not close to that 
of the separatrix. Equation (5.8) appears to contradict the possibility of iterating this 
transformation, because the semiclassical condition requires that p' should also be 
small. Equations (5.4) and (5.8) are not a unique choice of the renormalisation 
mapping, however: if we subtract an integer N from p' ,  this causes a change NT in 
the product of phases of the matrix elements in each irreducible cycle, which must be 
compensated by adding NT to 8, and O2 

We choose N to be the closest integer to 1 / p ,  so that we obtain the smallest value of 
p'. This transformation of p is closely related to its continued fraction expansion 
(Wilkinson 1984). If 1, we can perform further iterations of this semiclassical 
renormalisation-group transformation. 

5.2. Two contours per unit cell, non-degenerate case 

This case is essentially the same as the case of one contour per unit cell, except that 
the phase of the product of matrix elements is given by (3.9) instead of (3.6). The 
expression for the renormalisation of 8 must be altered accordingly: 

(5.10) 

where P' is the renormalised value of P, given by (5 .9 ) ,  and y = (SB/ h )  + T. 
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5.3. Two contours per unit cell, degenerate case 

If there are two contours per unit cell supporting Bohr-Sommerfeld quantised states, 
the renormalisation-group transformation can be described in similar terms to that of 
the simple lattice, and the results are simpler. The renormalised effective Hamiltonian 
is given by 

& ~ ’ = [ ( ~ + A ~ ) + ~ C O S ( ~ - ~ ~ ) + ~ C O S  t ( i + ~ 3 p * ’ ) + 2 ~ 0 ~ t ( i - J 3 p * ’ ) l ’ ’ ~  ( 5 . 1 1 )  

for which the speftrum is just a folded version of that of ( 5 . 2 ) ,  since if E belongs to 
the spectrum of H then f ( E )  belongs to the spectrum of f ( H ) .  The renormalisation 
equations for p are simply 

8’ = ..pi ( 5 . 1 2 )  
1 
P 

where N is the closest integer to 1 / p .  
If 8 = 0, the lattice has sixfold symmetry, and at those energies where there are two 

contours per unit cell these contours are automatically degenerate. It is interesting to 
note that this sixfold symmetry is broken by the RG transformation, as (5 .12)  shows 
that the renormalised Hamiltonian does not have 8’ = 0, and therefore has threefold 
symmetry. 

P ’ = - - N  

6. Renormalisation of the phase parameter 

In this section we discuss an analytical result for the renormalisation of the phase 
parameter 8. The result depends on a special feature of the model Hamiltonian ( l . l ) ,  
and we do not expect that an analytical form for 8‘ could be found for a general 
Hamiltonian with threefold symmetry. It is, however, important to analyse this special 
case because of the universality of our model: the effective Hamiltonian describing 
the splitting of a Bohr-Sommerfeld quantised sub-band is always of the form of ( 1 . 1 )  
whatever threefold symmetric model we start from, provided p is small so that our 
semiclasssical theory applies. Furthermore, the iteration of the mapping ( 5 . 9 )  describ- 
ing the renormalisation of p produces arbitrarily small values of p’ for a typical initial 
value (Wilkinson 1984) .  

To calculate 8’ we must calculate the action integral S3 or Si. The crucial observa- 
tion leading to an analytical expression for S3 is that as the energy changes both S3 
and Si change by the same amount. A proof of this result will be given later, but first 
we continue to give a formula for S3.  The sum of S3 and Si is given by ( 5 . 3 ) ,  so that 
these actions are given by 

S3 = a - a / 2  Sj = a ‘ -  a / 2  ( 6 . 1 )  
where a is the area of the phase trajectory and a, a‘ are constants. These constants 
can be fixed by noting that at the energy of the separatrix the segments of the path 
defining S3 on the complex energy surface vanish, and S3 is equal to the area of one 
of the real triangular phase contours. The areas of these triangular contours are 
( T - 2 e ) ’ / J 3  and ( T  + 2 8 ) ’ / J 3  and the area of the unit cell is 8.rr2 f 43. At the energy 
of the separatrix, therefore 

( T - 2 8 ) ’  ( ~ + 2 e ) ’  ( - 2 e ) 2  
J 3  

s3 = - 
J 3  43 a = A -  
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so that, by comparison with (6.1), 

4 . r r ( T - e )  Q 

J3 2’ 
-- s3 = (6 .3)  

This equation can be used together with (5 .9)  to give an analytical formula for 8’ which 
avoids the numerical evaluation of the action integral. 

We must now consider the proof of the assertion contained in (6.1), that changing 
the energy (and hence a )  causes equal changes in S3 and Si. Let us consider a path 
on the complex energy surface joining the three contours illustrated in figure 7; S3 is 
the real part of the action integral for this path. We join contours A and B by a path 
which holds Im( p )  = 0, allowing x to become complex, and the segments from contours 
A to C and B to C hold Im(x) = 0, allowing p to be complex. The real part of the 
action integral, S 3 ,  is just the area of the curve formed by the projection of this path 
onto the real x-p plane. The Hamiltonian (1.1) has the special feature that the 
momentum can be expressed as a function of the position analytically: 

H ( X ,  p )  = COS(X - e)  + 2  C O S ( X / ~ )  COS(& p / 2 )  (6 .4)  

so that 

1. J3 2 (  2 cos(x/2) 
E - COS(X - e) 

p=-cos-‘ (6 .5)  

If we fix Im(x) = 0, we see that outside the classically allowed regions, Re( p )  = 2 ~ ~ 1 1 4 3 ,  
where n is an odd or even integer depending on the sign of the argument of the cos-’ 
function. The real projection of the path defining S3 therefore has the form shown by 
the bold line in figure 7 .  The shaded area in figure 7 is, by symmetry, equal to one 
third of S 3 ,  and it is geometrically obvious that this area plus one sixth of the area of 
the phase contour is equal to a constant as the energy is varied, i.e. S 3 / 3  + a16 = constant 
in agreement with (6.1). 

P 

Figure 7. Illustrating the proof of a formula for the action integral S, for the model 
Hamiltonian used. See section 6 for an explanation. 
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The discontinuity of Re( p )  at the point where cos(x/2) = 0 is associated with a 
logarithmic divergence of Im(p) .  A path on the complex energy surface which does 
not diverge to infinity can be obtained by adding a very small imaginary part to x; 
this prevents Im(p)  from diverging but has a negligible effect on the behaviour of 
Re(p). This completes our discussion of the derivation of (6.3). 

Equation (6.3) can be used to derive an explicit formula for 8' when there is one 
contour per unit cell, because a must be a half-integer multiple of h in order to satisfy 
Bohr-Sommerfeid quantisation: 

8A 
2 T h  

-- - + ( n + f F f ) . r r +  N ~ T  

=8(p '+ N ) + ( N + n + f + i ) ~  (6.6) 

(the negative sign applies if the contours are below the separatrix). 

7. Numerical results 

Numerical experiments were performed to compare the semiclassical theory with the 
exact quantum mechanical spectrum. The exact evaluation of the spectrum was carried 
out by quantising the Hamiltonian in a coordinate representation, in which case 
the Schrodinger equation becomes a difference equation with periodic coefficients 
(Wilkinson 1984, 1986). Bloch's theorem is applicable when p is a rational number, 
N / M ,  where the integers N,  M are coprime; in this case the spectrum consists of 
exactly M bands. When p is irrational the spectrum is a Cantor set. All the numerical 
examples refer to rational values of p. 

Figure 8 illustrates the complexity of the spectrum; this is a plot of the energy 
bands for all rational p = N / M ,  with M d 40. The sub-bands corresponding to Bohr- 
Sommerfeld quantised energy levels can be seen clearly, and it is clear that the width 
of these bands vanishes very quickly as h + 0. It is also possible to see that the 
sub-bands have a structure which resembles that of the whole spectrum, but which is 
not exactly self-similar. 

The detailed numerical results are divided into three sections, corresponding to the 
three cases distinguished in section 3. 

7.1. One contour per unit cell 

Table 1 shows some semiclassical estimates of the parameters of the effective 
Hamiltonian describing the splitting of various sub-bands. The interpretation of the 
columns is as follows: 8, p, and h = 477p/J3 are parameters of the original Hamiltonian, 
n is the Bohr-Sommerfeld quantisation number, and w = ( d S / d E ) - '  is the classical 
frequency for the sub-band concerned (positive for bands below the separatrix, negative 
for those above). The energy predicted by Bohr-Sommerfeld quantisation is E,,, S2 
and S3 are the action integrals which characterise the tunnelling effect, and epred is the 
theoretically predicted magnitude of the tunnelling matrix element, and &,bs is the 
value deduced from the numerically computed width of the sub-band. The parameters 
of the renormalised Hamiltonian are e', p' and h' = 47rp/J3. We computed the actions 
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1 

N / h  

- 2 . 8 9 1 5  2 .0915  E 
Figure 8. Plot illustrating the complex structure of the spectrum, for a typical value of 0, 
0 = 77/4. The spectrum can only be computed when P is a rational number, N /  M,  when 
it consists of M bands. These bands are plotted as horizontal lines for every rational P 
with M c 40. 

Table 1. Parameters for numerically computed examples in figure 9. 

Example a b C 

0 
19/100 

1.378 
0 
2.052 

-0.200 
17.233 
43.420 

5.32E - 4 
5.22E - 4 
1 

0.5 
19/100 

1.378 
0 
1.786 

-0.169 
14.707 
9.231 
1.12E- 
1.06E - 
0.368 

0.25 
15/151 

0.721 
2 
0.834 

-0.139 
10.336 
11.438 

3 7.698 - 5 
3 8.31E- 5 

0.515 
P'  5 /  19 5 /  19 1/15 

S3 numerically, using the method described in appendix B, and found good agreement 
with the analytical formula, (6.3). 

The spectra of the renormalised Hamiltonians specified in table 1 are compared 
with those of the sub-bands they model in figure 9( a ) - (  c ) :  the spectrum of the original 
Hamiltonian is plotted above, with an expanded view of one sub-band (centre). The 
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I ' Ill11 II I I I II 3.47694707 I 0.38864601 

Ill 1 
1 I 111 111 1 3.27328300 

-0,24977505 

3.36755395 111 0.09119153 

4.20955229 1 0.31673467 

~ , I 460950565 
-0 02036476 

IC) 
Figure 9. Comparison of the spectrum of the renormalised Hamiltonian (below) with the 
sub-band (centre) of the original Hamiltonian which it is intended to model (above); the 
numbers to the right are the widths and the positions of the centre of each spectrum. The 
other parameters are listed in table 1. All of these examples are of sub-bands for which 
there is one phase contour per unit cell. 

spectrum of the renormalised Hamiltonian with the same spectrum as this sub-band 
is shown below. All the spectra are scaled and shifted so that they have the same 
range: the numbers to the right are the widths and the positions of the centres of the 
unscaled spectra. 

7.2. Two contours per unit cell, non-degenerate case 

Results for this case are shown in table 2. The interpretation of most of the columns 
is the same, except that S3 is replaced by SB, the area of the second phase trajectory, 
which does not satisfy the Bohr-Sommerfeld condition. The comparisons of spectra 
are shown in figure 1 0 ( a ) - ( c ) ;  the interpretation is the same as for figure 9. 
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Table 2. Parameters for numerically computed examples in figure 10. 

Example a b C 

0.03 
51106 
0.342 
0 

- 1.302 
0.102 
1.249 
2.445 
1.33E-5 
1.41E - 5 
0.837 
1 i 5  

0.03 
71150 
0.339 
1 

- 1.229 
0.094 
0.915 
1.820 
8.05E- 5 
7.31E - 5 
0.784 

- 

3 i 7  

0.11 
si151 
0.240 
0 
1.123 
0.087 
0.770 
5.771 
2.00E - 5 
1.93E - 5 
0.523 
115 

7.3. Two contours per unit cell, degenerate case 

This case occurs naturally in the case of a Hamiltonian with sixfold symmetry (i.e. 
8 = 0), and can also occur due to accidental degeneracy when there is threefold 
symmetry. We show two examples where the degeneracy is symmetry induced ( 8  = 0), 
and a third where this degeneracy is broken by changing 8 slightly. In this case we 
can estimate A, the offset of two nearly degenerate bands, using the Bohr-Sommerfeld 
quantisation rule: 

where asla8 is the rate of change of the area of a phase contour with 8. The parameters 
calculated semiclassically are given in table 3; this has the same format as table 1. The 
comparison of spectra is shown in figure l l ( a ) - ( c ) .  
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Appendix A 

In this appendix we discuss the calculation of the effective matrix element for tunnelling 
between three identical Bohr-Sommerfeld quantised levels, in the case where the 
tunnelling path uses a fourth contour, which does not satisfy the Bohr-Sommerfeld 
condition at the energy concerned (see figure 12). 

The amplitudes of the WKB wavelets at various positions are indicated by lower 
case letters in figure 12. We consider the amplitudes a, b, a' ,  b', which are related to 
each other because of tunnelling between the phase contours, and calculate the small 
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I 2 5 189'3004 I I  I 0 30339265 

4 2 1490526 
0 6477 1044 

1 1 1  
1 1 1  

I 
I 

I II 
I II 

I b )  

I I I  

0 00045562 I - 1  23792481 

Figure 10. Similar to figure 9: the sub-bands are at an energy where there are two 
non-degenerate phase contours per unit cell. The other parameters are listed in table 2. 

amplitudes a, b assuming that a',  b' are of order unity. These amplitudes are related 
by a transfer matrix (Heading 1962): 

where t is the transmission amplitude for the tunnelling process, and r is the magnitude 
of the reflection coefficient 

t =exp(-IIm S21/h)  t 2 +  r2 = 1. (A21 

b'= -a 'exp(i4)  4 = s,/ h = 274 n + t )  + 6 (A31 

The amplitude b' has the same magnitude as a': 

where SA is the area of the uppermost phase contour, and S is a correction to the 
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Table 3. Parameters for numerically computed examples in figure 1 1 .  

Example a b C 

P 
h 
n 

E" 

s2 

w 

A 
&pred 

&obr 
et/  
P'  

0 
71150 
0.339 
0 

- 1.379 
0.109 
1.578 
0 
3.49E - 4  
3.51E-4 
0.429 
317 

0.0001 
7/150 
0.339 
0 

- 1.379 
0.109 
1.578 
1.418 
3.49E - 4  
3.55E-4 
0.429 

- 

317 

0 
81 193 
0.301 
0 
1.392 
0.110 
1.644 
0 
1.40E-4 
1.44E-4 
0.125 
118 

Bohr-Sommerfeld quantisation condition, which embodies the tunnelling effect. Com- 
bining the above expressions, and assuming that S and t are small, we find: 

so that 

b = exp(ix)a tan(x/2) = t/2a2. (A51 
Each of the three tunnelling events causes a phase shift of x of the wavefunction on 
the central phase contour. The overall change in phase of this wavefunction as it is 
traced around the central phase contour should be equal to an integer multiple of 27r: 

27rn=3x+ y y = s,/ h + 7r (A61 
where SB is the area of the central phase trajectory and the additional phase change 
of 7r is because this trajectory has two turning points. The phase shift S is therefore 

t 2  
2 S =-cot( y/6+ n7r/3) 

which takes three distinct values. The change in the energy of the eigenstate due to 
the phase change S is 

AE = hwAS oA= [$I-' 
so that the threefold degeneracy is split as follows: 

h W A t 2  
E, = Eo+- cot( n7r/3 + y/6) 

2 

where Eo is the energy predicted by Bohr-Sommerfeld quantisation. 
Now we relate the splitting given by (A9) to a model in which we assume that each 

of the three states is coupled to its two neighbours by a matrix element of magnitude 
E ,  with the product of the matrix elements having phase 8: 

H ~ ~ H ~ ~ H ~ ~  = e 3  exp(-ie). ('410) 
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I l 414365530 
0 68469119 I 

I 

la1 

I I 4 14368963 
i I 068467402 

Ill I I l l  
Ill I I l l  

I I I I 111 0.00182688 
-1.38625741 

2.55643940 I I I 1 111 0.00000000 

I I 4 18069363 
I I  ' ' 1 ' 069237339 

I C )  

Figure 11. Similar to figure 9: in these examples there are two degenerate phase contours 
per unit cell. Table 3 lists the other parameters. 

Q 
Figure 12. Phase contours for three Bohr quantised 
states, for the case described in appendix A where 
the tunnelling path is via a fourth, non-resonant 
contour. The lower case letters stand for the ampli- 
tude of the W K B  wavelets at various points. 
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The energy levels of this model are 

E,, = EI,+2& cos[2m/3+8/3]  ( A l l )  
where EI, is the constant diagonal matrix element. We choose parameters EI, E, 8 of 
the model so the energy levels agree with (A9). We find the ratio ( E ,  - E2)/(E2 - E 3 )  
is in agreement if we set 

r -  

e=- -+- [&]  Y 
2 

where [ X I  is the integer part of X ,  and that E ,  - E2 is in agreement if 

h W A t 2  

2 sin( y/2) ' 
E =  

Clearly EA is approximately equal to Eo. The calculation of the difference between 
these quantities using the formalism above is meaningless; there are corrections to the 
Bohr-Sommerfeld condition with a power-law dependence on h, starting at order h3 ,  
which are much larger than the exponentially small corrections due to tunnelling. The 
power-law corrections depend only on the properties of one real phase trajectory, and 
therefore make no contribution to the splitting of degeneracies, which is therefore 
determined by tunnelling effects. 

Appendix B 

In this appendix we describe the method used to evaluate the complex-valued action 
integrals which are required for the calculation of the tunnelling matrix elements. This 
material is included because the complex energy surface has a complicated geometry, 
and some obvious numerical methods will not work. 

The problem is to calculate an integral of the form 

s =  p ( 4 ;  E ) d q  I 
where the function p ( q ;  E) is defined implicitly by 

H ( q ,  P) = E 

and the beginning and end points of the integration are points on two different real 
contours of the Hamiltonian. An obvious method for evaluating this integral would 
be to define the values of Re q and Rep  along a path between the two contours, and 
to adjust the values of Im q and I m p  at each point along the path so that (A2) is 
always satisfied (this can be achieved using a Newton-Raphson method). This method 
will fail if there are no solutions of (A2) for given values of Re q, Re p at some point 
along the path. Due to the geometry of the complex energy surface, it is always found 
that the imaginary parts of q and p do not return to zero at the end of the path, i.e. 
we end up on a complex branch of the energy surface, rather than the real contour 
we were aiming for. The reason for this surprising observation is understood, but 
would require a lengthy discussion. 

Instead of prescribing Re q and Re p along the tunnelling path, we make a canonical 
transformation, in the form of a rotation of the phase plane, so that the projections 
onto the q axis of the two contours being joined do  not overlap. We then calculate 
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* 
X 

Figure 13. Illustrates the method described in appendix B which was used to calculate Sz 
and S, numerically. 

the integral with p complex but with Im q = 0. This always brings us back onto a real 
branch of the energy surface. 

As an example, we describe in detail how we calculate the tunnelling action S2 
and the action S3 determining the relative phases of the matrix elements, for the case 
of a simple lattice of states. First we rotate the Hamiltonian by r / 2  in the phase plane 
by the transformation (x, p )  + (x’, p ‘ )  = ( p ,  -x). The rotated Hamiltonian has mirror 
symmetry about the line x = 0. We locate a point (0, p * )  of threefold symmetry along 
this line (this can be done analytically), and we find the value p1 of the momentum 
closest to this point of symmetry such that the point x = 0, p = p ,  lies on the phase 
contour at energy E (see figure 13). We rotate the point (O,pl) about the centre of 
symmetry to find another point (x2,p2)  on a phase contour at energy E. We then 
evaluate the action integral 

Z = lox2 dxp(x;  E ) .  033) 

Both S2 and S,  can be obtained from Z; clearly 

S2=21mI :  (B4) 

2 Re Z = S 3 / 3  + x2( p *  f p , ) .  035) 

and it is obvious from figure 13 on geometrical grounds that 
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